526. Beautiful Arrangement
1. Question
Suppose you have n
integers labeled 1
through n
. A permutation of those n
integers perm
(1-indexed) is considered a beautiful arrangement
if for every i`` (1 <= i <= n)
, either of the following is true:
perm[i]
is divisible byi
.i
is divisible byperm[i]
.
Given an integer n
, return the number of the beautiful arrangements that you can construct.
2. Examples
Example 1:
Input: n = 2
Output: 2
Explanation:
The first beautiful arrangement is [1,2]:
- perm[1] = 1 is divisible by i = 1
- perm[2] = 2 is divisible by i = 2
The second beautiful arrangement is [2,1]:
- perm[1] = 2 is divisible by i = 1
- i = 2 is divisible by perm[2] = 1
Example 2:
Input: n = 1
Output: 1
3. Constraints
1 <= n <= 15
4. References
来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/beautiful-arrangement 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
Solutions
class Solution {
ArrayList<Integer>[] list;
boolean[] visited;
int res = 0;
public int countArrangement(int n) {
list = new ArrayList[n + 1];
visited = new boolean[n + 1];
for (int i = 1; i <= n; i++) {
list[i] = new ArrayList();
for (int j = 1; j <= n; j++) {
if (i % j == 0 || j % i == 0) {
list[i].add(j);
}
}
}
backtrace(1, n);
return res;
}
private void backtrace(int index, int n) {
if (index == n + 1) {
res++;
return;
}
for (int k : list[index]) {
if (!visited[k]) {
visited[k] = true;
backtrace(index + 1, n);
visited[k] = false;
}
}
}
}